The test questions and test points of matrix analysis and application are mainly for the first-year graduate course.

矩阵复习题目(划的题+课后题)

划的题

1-4在ipad笔记上。

0x05

考虑上三角矩阵 $\mathbf{A}$

(1)如果 $\mathbf{A}$ 是一个酉矩阵,则 $\mathrm{A}$ 是一个对角矩阵,且对角元素的范数都是 1

(2)如果 $\mathbf{A}$ 是一个上三角 (块) 酉矩阵, $\mathbf{A}=\left(\begin{array}{ll}\mathbf{P} & \mathbf{B} \ \mathbf{0} & \mathbf{Q}\end{array}\right)$,其中 $\mathbf{P}$ 为 $m \times m$ 矩阵,$\mathbf{Q}$ 是 $n \times n$ 矩阵,那么 $\mathbf{P}$ 和 $\mathbf{Q}$ 都是酉矩阵,且 $\mathbf{B}=\mathbf{0}$。

(1)$\mathrm{A}$ 为上三角矩阵,且为酉矩阵 $\Rightarrow \mathrm{A}^H=\mathrm{A}^{-1},\mathrm{~A}^H$ 为下三角矩阵,由于上三角矩阵的逆依旧是上三角阵,因此$A^H$也是上三角矩阵,因此$A^H$必须是对角阵。

(2)$\mathbf{A}$ 为上三角分块酉矩阵, 由 1) 知 $\mathrm{B}=\mathbf{0}$,
且由:

即 $\mathrm{P}$ 和 $\mathrm{Q}$ 均为酉矩阵。

0x06

设 $V_1$ 与 $V_2$ 分别为齐次线性方程组 $x_1+x_2+\ldots+x_n=0$ 和 $x_1=x_2=\ldots=x_n$ 的解空间, 证明 $\mathbb{R}^n=V_1 \oplus V_2$

解:

方程组 $x_1+x_2+\ldots+x_n=0$ 的解空间是 $n-1$ 维的,

方程组 $x_1=x_2=\ldots=x_n$ 的解空间是 1 维的,

由于 $a1, a_2, \ldots, a{n-1}, a$ 线性无关, $V1+V_2=\operatorname{span}\left(a_1, a_2, \ldots, a{n-1}, a\right)=\mathbb{R}^n$ 又因 $\operatorname{dim} V_1+\operatorname{dim} V_2=n-1+1=n$, 根据维数定理:

因此 $\operatorname{dim}\left(V_1 \cap V_2\right)={\boldsymbol{0}}$, 命题成立

0x07

设 $n$ 阶方阵 $\mathbf{A}=\left(a{i j}\right){n \times n}$, 且 $\sum{j=1}^n\left|a{i j}\right|<1, i=1,2, \ldots, n$, 证明 $\mathbf{A}$ 的每一个特征值的绝对值 $|\lambda|<1$

解:

设 $\mathbf{A} \mathbf{x}=\lambda \mathbf{x}, \mathbf{x}=\left(x_1, x_2, \ldots, x_n\right)^T$, 且设 $\left|x_k\right|=\max \left(\left|x_1\right|,\left|x_2\right|, \ldots, \mid x_n\right)$
取 $\mathbf{A x}=\lambda \mathbf{x}$ 的第 $\mathrm{k}$ 个方程:

于是

即有

0x08

证明正规矩阵 $\mathbf{A}$ 若是一个上三角矩阵, 则必是对角矩阵

正规矩阵满足:$\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}$

image-20230619174024807

0x09

image-20230619174523768

image-20230619175603844

0x10

image-20230619175658977

image-20230619175913465

0x11

image-20230619175931494

image-20230619192429145

0x12

image-20230619192548271

image-20230619193420590

0x14

image-20230619193506517

image-20230619194618960

image-20230619194850805

0x16

image-20230619194910744

image-20230619195336023

0x17

image-20230619195401940

image-20230619195648384

image-20230619195725687

0x18

image-20230619200534000

image-20230619202157565

0x19

image-20230619202406010

image-20230619203142566

课后题

0x00

image-20230619204132641

image-20230619210701652

0x01

image-20230619204147001

image-20230619215424552

0x02

image-20230619204439772

image-20230619210830166

image-20230619210903564

image-20230619210936481

image-20230619211006618

image-20230619211106136

image-20230619211154194

0x03

image-20230619204457274

image-20230619211233861

image-20230619211252888

0x04

image-20230619204516302

image-20230619211320773

image-20230619211339821

0x05

image-20230619204538298

image-20230619211407447

image-20230619211422670

0x06

image-20230619204553101

image-20230619211447113

image-20230619211515949

image-20230619211556657

image-20230619211619838

0x07

image-20230619204608118

image-20230619211701667

image-20230619211718223

0x08

image-20230619204625724

image-20230619211757091

0x09

image-20230619204644483

image-20230619211828997

0x10

image-20230619204657108

image-20230619211854013

image-20230619211909082

image-20230619212158445

0x11

image-20230619204709810

0x12

image-20230619204721545

image-20230619212219795

0x13

image-20230619204739654

image-20230619212307114

0x15

image-20230619204808058

image-20230619212334643

image-20230619212411997

image-20230619212427607

0x16

image-20230619204825643

0x17

image-20230619204858671

image-20230619212534499

image-20230619212548580

0x18

image-20230619204912090

image-20230619212625980

image-20230619212654722

image-20230619212714811

0x19

image-20230619204950945

0x20

image-20230619205001893

0x21

image-20230619205012869

0x22

image-20230619205023738

image-20230619212733291

0x23

image-20230619205039496

image-20230619212753307

0x24

image-20230619205120552

image-20230619212900348

0x25

image-20230619205211622

image-20230619212920263

0x26

image-20230619205156479

image-20230619212831765

0x27

image-20230619205223316

0x28

image-20230619205240071

image-20230619213010634

image-20230619213023926

image-20230619213108823

image-20230619213120448

image-20230619213144240

0x29

image-20230619205309114

image-20230619205323149

image-20230619213533767

0x31

image-20230619205338352

image-20230619205351658

image-20230619213203727

image-20230619213242280

image-20230619213339700

0x33

image-20230619205426455

image-20230619205442741

image-20230619213404567

image-20230619213432093

0x35

image-20230619205454066

image-20230619213452353

0x36

image-20230619205509751

image-20230619213606536

0x37

image-20230619205533243

image-20230619205545905

image-20230619213630032

image-20230619213716648

image-20230619213754305

0x39

image-20230619205601639

image-20230619213818457

image-20230619213836908

0x40

image-20230619205614420

image-20230619213902953

0x41

image-20230619205624714

image-20230619205731682

image-20230619213924466

0x43

image-20230619205745994

image-20230619213955316

0x44

image-20230619205821000

0x45

image-20230619205831370

0x46

image-20230619205841209

image-20230619214018002

留言

© 2024 wd-z711

⬆︎TOP